LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS
 FIRST SEMESTER - NOVEMBER 2009
 ST 1813 - ANALYSIS

Date \& Time: 04/11/2009 / 1:00-4:00

Max. : 100 Marks

$\underline{\text { SECTION - A }}$

Answer ALL the following questions

1. Define a convergent sequence in a metric space.
2. State any two conditions to be satisfied by a norm.
3. Define an isometry
4. Define a compact metric space.
5. Explain the symbols O and o.
6. State any one property of a uniformly convergent sequence of functions which is also assured for the limiting function.
7. State the limit form of comparison test.
8. When is a function said to be Riemann-Stieltjes integrable with respect to a monotonic increasing function?
9. Define linear derivative of a function $f: R^{m} \rightarrow R^{n}$.
10. State a necessary and sufficient condition for a complex function to be differentiable at a point.

SECTION - B

Answer any FIVE questions

$$
(5 \times 8=40 \text { marks })
$$

11. Show that two metrics ρ and σ on the same set \mathbf{X} are equivalent if there exist constants $\lambda>0$ and $\mu>0$, such that $\lambda \rho(\mathrm{x}, \mathrm{y}) \leq \sigma(\mathrm{x}, \mathrm{y}) \leq \mu \rho(\mathrm{x}, \mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathbf{X}$. Give an example to show that the converse is not true.
12. (a) State and prove Cauchy's inequality concerning inner products.
(b) Show that $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$
13. Show that a necessary and sufficient condition for a function $f:(\mathbf{X}, \rho) \rightarrow(Y, \sigma)$ to be continuous is that, whenever \mathbf{G} is an open set in $\mathbf{Y}, \mathrm{f}^{-1}(\mathrm{G})$ is open in \mathbf{X}.
14. Test for absolute convergence of the following series:
(a) $\sum_{n=1}^{\infty} \frac{n!}{(1-i n)^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n!(3 n)!}{(4 n)!} 10^{n}$
$(4+4)$
15. Show that for a power series $\Sigma a_{n} z^{n}$, the radius of convergence is $R=1 / \lim \sup \left|a_{n}\right|^{1 / n}$.

Hence, find the radius of convergence of the power series $\sum_{n=2}^{\infty} \frac{z^{n}}{n(\log n)^{2}}$
16. State and prove a necessary and sufficient condition for a function f to be RiemannStieltjes integrable with respect to a monotonic increasing function.
17. Prove that Riemann-Stieltjes integral is additive with respect to the integrand.
18. Establish the relation between linear derivative and the matrix of partial derivatives of a function from $R^{m} \rightarrow R^{n}$.

SECTION - C

Answer any TWO questions
19. (a) State the three definitions of limit point of a set and establish their equivalence.
(b) Find the set of all interior points of the set $\mathrm{E}=\{0,1,2, \ldots\}$ in (R, ρ) and in (\mathbb{R}, d) where ρ is the usual metric and d is the discrete metric.

$$
(15+5)
$$

20. (a) Let $\left\langle u_{n}\right\rangle$ be any sequence of real numbers and $\left\langle v_{n}\right\rangle$ be a sequence of positive real numbers. Let $s_{n}=u_{1}+u_{2}+\cdots+u_{n}$ and $t_{n}=v_{l}+v_{2}+\cdots+v_{n}$ such that $t_{n} \rightarrow \infty$. Prove that $\underline{\lim } \frac{u_{n}}{v_{n}} \leq \lim \frac{s_{n}}{t_{n}} \leq \overline{\lim } \frac{s_{n}}{t_{n}} \leq \overline{\lim } \frac{u_{n}}{v_{n}}$
(b) Using (a) and any other result (to be quoted), deduce that if $\left\langle x_{n}\right\rangle$ is a sequence of positive numbers, $\underline{\lim } x_{n} \leq \underline{\lim }\left(x_{1} \cdot x_{2} \cdots x_{n}\right)^{1 / n} \leq \overline{\lim }\left(x_{1} \cdot x_{2} \cdots x_{n}\right)^{1 / n} \leq \overline{\lim } x_{n}$

$$
(12+8)
$$

21. Establish Weierstrass Approximation Theorem (by proving all the required lemmas).
22. (a) Establish the equation for 'integration by parts'.
(b) An ellipse in R^{3} is given by the equations

$$
\begin{align*}
& \mathrm{g}_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z})=2 \mathrm{x}^{2}+\mathrm{y}^{2}-4=0 \\
& \mathrm{~g}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+\mathrm{y}+\mathrm{z}=0 \tag{8+12}
\end{align*}
$$

Find the points on the ellipse which are nearest to and furthest from the y-axis.

